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The theory of radiative transitions, in centrosymmetric complexes, is examined 
in great detail, within the framework of the crystal field method. 

In connection with radiative transitions, the current method of calculations, 
with and without invoking closure approximation, are considered from a 
purely theoretical point of view, by taking advantage of the irreducible tensor 
method put forward by Griffith. 

Explicit equations are derived throughout the course of this work to account 
for the vibronic electric dipole moments, associated with d - d and f - f  type 
of excitations. 
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1. Introduction 

The general theory of radiative transitions, in molecular systems with spectro- 
scopic interest, has been the subject of many research works during the last two 
decades. 

Electric dipole transition moments for both centrosymmetric and non centrosym- 
metric complexes, have been evaluated by using: 

I) A crystal field formulism [1-11], II) A dynamic coupling scheme [11-19], and 
also III) A combined crystal field and dynamic coupling mechanism [15, 16]. 
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Here we shall concentrate on the evaluation of transition dipole moments, in the 
case of centrosymmetric complexes, by employing a vibronic crystal field model. 
We shall introduce a symmetry adapted approach in order to deal with d - d and 
f - f  type of excitations. We shall focus our attention on the explicit evaluation 
of both: total dipole strength and relative vibronic intensity distribution associated 
with each of the vibronic origins. 

2~ Method of calculation 

The current methods of calculations, with and without invoking closure approxi- 
mation for the wavefunctions, shall be formulated by taking advantage of the 
irreducible tensor method put forward by Griifith [20, 21]. 

In particular, and for the case of centrosymmetric inorganic complexes, there 
are several calculations in the literature dealing with the actual evaluation of the 
associated vibronic electric dipole transition moments [1-6, 9, 11, 14]. In all of 
these, the ligand systems have been regarded either as point charges or point 
dipoles. 

This vibronic crystal field method, has also been extended to centrosymmetric 
inorganic complexes, having polyatomic ligands, such as amino groups [ 11]. There 
is, an alternative method of calculation, due to Mason [17-19] and Richardson 
[12, 13, 16], the so-called'vibronic ligand polarization scheme, which assumes 
ligand dipoles induced by the radiation field, which then induce electric multipoles 
on the metal ion. It is worth mentioning at this point that the Faulkner-Richardson 
intensity model, in the case of lanthanide complexes, includes both the ligand 
point-charge and ligand polarization effects [12, 13, 16]. Both the vibronic crystal 
field and the vibronic ligand polarization methods are complementary to one 
another, and therefore the total dipole strength associated with a particular 
electronic excitation, should be computed by summing up: the crystal field, the 
ligand polarization and the interference terms, derived from this type of combined 
vibronic crystal field and dynamic coupling mechanisms. 

The relative importance of these contributions has been pointed out by Richard- 
son [16] in the case of lanthanide complexes. In the case of centrosymmetric 
inorganic complexes, we have also considered the dependence of the relative 
vibronic intensity distribution on the choice of the force field [15]. 

Within the framework of the vibronic crystal field method, two schemes of 
calculations have been proposed in the literature, namely the vibronic crystal 
field method of Liehr and Ballhausen [1, 9] and the vibronic crystal field method 
of Koide and Pryce [2, 3]. 

The vibronic approach of Liehr and Ballhausen [1, 9] starts from the assumption 
that, for a centrosymmetric inorganic compound, a d - d type of excitation takes 
place by borrowing intensity from a d-p parity allowed excitation through 
cooperation of the odd vibrational coordinates of the molecular system in 
question. 
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Following the same argument, one might argue that a parity forbidden f - f  type 
of excitation in a centrosymmetric complex could borrow intensity from a d - f  
electronic excitation through cooperation of the ungerade vibrational motions 
of the complex. 

In this scheme, the intermediate electronic states should have parity other than 
the terminal states of the electronic transition. 

The method of Koide and Pryce, on the other hand, makes use of the closure 
properties of the wavefunctions. They assume, that all the intermediate electronic 
states which contribute to the transition dipole moment,  occur at the same energy 
E and form a complete set of orthonormal functions. When this assumption is 
adopted, the nature of these states become totally irrelevant to the evaluation 
of the transition dipole moments, except on the choice of an effective energy gap. 

Here  we shall present a symmetry adapted formulism to evaluate the correspond- 
ing transition dipole moments, associated with parity forbidden electronic transi- 
tions in centrosymmetric complexes, by using the irreducible tensor method of 
Griffith [20, 21]. 

This approach offers several advantages, because the derivation of general for- 
mulae to express the total transition dipole moment associated with a vibronically 
allowed excitation, can be reduced to: 

i) The evaluation of reduced matrix elements, involving the vibronic operators 
(0 V/OS~)o, where V is the symmetry adapted form of the Coulombic interaction 
potential. S~ stands for the yth component of a symmetry coordinates S which 
transforms under the cth irreducible representation of the molecular point group, 
and to 

ii) The choice of the vibrational force field, in order to obtain a representative 
set of normal coordinates for the system. 

Let us consider next in some detail, both the Liehr and Ballhausen and the Koide 
and Pryce's methods of calculation, to deal with radiative transitions. 

3. The Koide and Pryce method 

It can be shown that in most general terms, the a-vector  component of the 
transition dipole moment associated with the ]F 1 YlJ)  ~ ]F2y2I) excitation may be 
written as follows [2, 3, 6, 11] 

(r1711-~r2~'21) = E (F171jlW,(k)tx~ Ir2v21)Q,(k) (1) 
F,%k 

where Wrv(k)=(OV/OQrv(k)) o is the vibronic operator,  and k, j and l are 
repeated representation labels. AE is some sort of effective energy, corresponding 
to the energy gap of a spin and parity allowed excitation. Qr  v (k) stands for the 
yth-component  of a normal coordinate Q which transforms under the Fth- 
irreducible representation of the point molecular group. 



342 R. Acevedo et al. 

F T a The tensorial product operator W~ (k)tz,  may be decomposed further on, by 
means of the relationship [21-23] 

W ~ ( k ) ~ ,  = Y , O~(k). (2) 
F,')" Ol 

The above identity holds for all those cases in which the direct product f ix  T1 is 
simple reducible. By combining Eqs. (1) and (2), we obtain the symmetry adapted 
form for the a-vector component of the transition dipole moment. 

/x~(F1 yl j  ~ FzT2/) 

= ( ~ E ) _ ~  Y~ A 1 / 2 ( F ) ( - I ) r + y + ( - 1 ) r l + , ~  
r , -zk F,3,,i 

v ~, ,~ 3"+ vi <FdllO"(k)lIr2l>,O~(k). (3) 
3"2 3/ 

Note that the labels i, j and l may be dropped, when the direct product F I x  F 2 
is simply reducible. 

Next, by assuming that the potential energy surfaces of the two terminal electronic 
states of the electronic transition have the same shape and are only vertically 
displaced to one another, we may evaluate the total dipole strength corresponding 
to the excitation as follows: 

D0,(r13'1j, 0--, r23'2/, 1) = E I (0[~  (V,3'lJ -~ F23'2l)11)1 z (4) 
ot 

where the harmonic oscillator approximation for the vibrational wavefunctions 
has been employed [24-26]. 

It can be seen from Eq. (3) that the actual evaluation of the total transition 
dipole moment depends ultimately on the evaluation of both: The 
(Fljl [Or(k)l [F2I)i reduced matrix elements and on the choice of a representative 
vibrational force field for the molecule. 

Consider next, the evaluation of these relevant reduced matrix elements. To do 
so, write the Or(k) tensor operators as follows (21-23). 

Or(k)=A1/2(F)(-l)r+:'+~ V(~  T, F )  g T1 ~,~ a 3' + W~(k)lz~ (5) 

where the vector components of the first rank tensor operator tz 21 are defined 
by following Griffith's Table A-19 [20] as given below: 

T 1 1 /~+1 ~--- D+I, /xga = D 1, rl / U ,  1 = D1_1 (6) 

and the Dq k tensor operators are given by: D k =--erkC k, where the C k are the 
standard Racah's tensor operators [11, 14, 15, 27]. Next, let us consider in some 
detail the actual evaluation of the vibronic operators W~(k). 
Here we may write the identity (11, 14, 15): 

W~(k) =- [OV/OO~(k)]o = E Lik6re6z,~,[OV/OSr(i)]o (7) 
F,'),,i 
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where the Lij are the matrix elements of the so called L-matrix, which relates 
the symetry and the normal coordinates of the molecular system, through the 
relationship: S = LQ[24, 25]. 

In our notation, st(i) stands for the yth-component of a symmetry coordinate 
S which transforms under the Fth-irreducible representation of the molecular 
group. Also, i is a repeated representation label. 

Furthermore, these symmetry coordinates may be expressed in terms of Cartesian 
nuclear displacement coordinates of each nucleus, by means of the relationship 
S = B.  R [24, 25] so that we may write the identity: 

[OV/OSrr(i)]o=V[OV -A-f -+--+OXk OV aYk OV OZk ] 
fXk OS~,(i) OYk osrv(i) OZk ~ J o  (8) "rE 

where all the relevant derivatives, should be evaluated at the equilibrium nuclear 
configuration, O = Q0- 

In connection with the crystal field potential V, this may be written in a symmetry 
adapted form, by considering the Coulombic interaction potential between two 
non overlapping charge distributions, (M) and (L) and separated at a distance 
RL, where RL is identified here with the metal-ligand bond distance [27, 28]. 

In a symmetry adapted form, we write the crystal field potential, as follows: 

V = E  VL=EqLe E L r Gr~ (k)M~ (k). (9) 
L L F,%k 

The above identity represents the interaction potential between a 2 z central metal 
ion multipole and the ligand point charges. Here qt stands for the nuclear effective 
charge on the Lth ligand position. 

Also, G~,(k) stands for the crystal field geometrical factors, and Mr(k) 
represents the symmetry adapted form of the central metal ion multipoles, k is 
a repeated representation label. The Coulombic interaction potential between a 
2 k central metal ion multipoles and ligand dipoles has been reported recently [27]. 

Here we shall follow Griffith's convention, see Table A-19 [20], and will define 
the central metal ion's multipoles according to behavior of the kets IJM) under 
the symmetry operations of the O-rotation group. Thus for k -- 2, we define the 
symmetry adapted form of the central metal ion, electric quadrupole: 

M0 z =Do 2 

1 2 
M~ = ~-~ (P+2 + D2-2) 

M+T~ =D21 (10) 

M T2 =~-~(D2+2 -D2_2) 

M_T~ = -D21" 
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To obtain the real components of the central metal ion, electric quadrupole, we 
use the transformations given by Griffith in Table A-16 [20]. Griffith listed 
octahedral sets of wavefunctions for J-< 6, and an extension of Griffith's work 
was considered by Golding [29] for J > 6. Observe than in Eqs. (10), the ket IJM) 
of Griffith's have been replaced by the tensor operators Dq ~ =-erkCka. 

For the sake of completeness, in Appendix I we list the octahedral set of 
wavefunctions for J = 7, a case which is relevant to account for the vibronic 
intensity associated with f - f  type of excitations, within the framework of the 
Koide and Pryce's method. 

Having adopted this convention to define the central metal ion's multipoles, it 
is a straightforward process to obtain the symmetry adapted form of the Coulom- 
bic interaction potential corresponding to the electric quadrupole-point charge 
interaction. The associated geometrical factors are given in Appendix II. Higher 
order  interaction terms are also included in this appendix. (The cases we have 
considered correspond to the Coulombic interaction, between a 2 k central metal 
ion's electric multipole and ligand point charges, for k = 1 up to 7). 

Having defined, this symmetry adapted form of the crystal field potential V, we 
may proceed further on and obtain the explicit form of the vibronic operators, 
defined by Eq. (7). Assuming that the transformation S = L .  Q is known, the 
problem is then reduced to obtain the derivatives of the symmetry adapted form 
of the crystal field potential with respect to the symmetry coordinates of the 
molecular system. Observe that these derivatives are to be evaluated at the 
nuclear equilibrium configuration of the molecular system. This may be achieved 
by Combining Eqs. (7) and (8). 

Next, consider a specific application of this symmetry adapted, crystal field 
method, to account for the vibronic intensity associated with d - d and f - f  type 
of excitations in a centrosymmetric ML6 compound. 

It is well known, that a molecular system of this type has three odd parity 
vibrational motions, namely: A t 1 u ( / ) 3 )  stretching, a tl u (1'4) bending and a tzu (/)6) 
bending vibrations. The corresponding odd parity symmetry coordinates are 
reported in Refs. [9] and [11], and are given in terms of Cartesian nuclear 
displacement coordinates of each nucleus of the molecular system. 

We shall denote the set of odd parity symmetry coordinates, as Skt where k = 3, 
4, 6 and t =  a, b, c. Thus the vibronic operators, say Vkt = (OV/OSk,)O can be 
obtained by direct differentiation of the Coulombic interaction potential with 
respect to the relevant odd parity symmetry coordinates of the molecular system, 
in question. 

Thus, assuming that all the ligand systems are equivalent and carry a nuclear 
effective charge of q, we may write, in the most general sense, the Vkt operators 
as follows: 

Vkt = qe ~ r ~ �9 r �9 Ak t  ( t ) M v ( t )  (11) 
F, ' / , i  
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where the ArkT(i) are the vibronic crystal field coefficients, defined by means of 
the relationship: 

k 0XL aSk, OYL OSkt OZL OSktJo 
(12) 

The vibronic crystal field coefficients, are listed in Appendix III, for F = Tlu, T2u. 
The crystal field geometrical factors, G~,(i) are listed in Appendix II, and the 
central metal ion's multipoles, M r (i) are given by Griffith [20] in Table A-19. 
The relevant cases for this kind of calculation correspond to the following values 
of J: J = l ,  3, 5, 7. 

For the irreducible representations F = T1, T2, Griffith [20] writes the transforma- 
tions: 

IrX> = +~(IF + 1>-IF- I>) 

IF Y> = +~(IF + 1> + IF- i>) (13) 

IrZ>=-ilrO> 

which relate, the real and complex vector components of these irreducible 
representations in the O-rotation group, for J even. 

When F = T1 and Ta, and J is odd, the transformations defined by Eq. (13), give 
purely imaginary IFX>, IF Y> and IFZ> vector components. 

For the sake of completeness, we list in Appendix IV, the symmetry adapted 
complex vector components of the central metal ion, electric multipoles, for 
J = l ,  3, 5, 7 and F =  T, and T2. 

These symmetry adapted complex vector components of the central metal-ion 
multipoles are consistent, with the crystal field geometrical factors G ~ ( i )  in- 
formed in Appendix II, as well as with the definition of the crystal field potential 
given by Eq. (9). 

To illustrate the utility of both Appendixes III and IV, let us find next the vibronic 
operators Vk, for k = 3, 4, 6 and t = a. 

It is a straightforward process to write, from Appendix III and Eq. (11), these 
vibronic operators as follows: 

V3a = qe{(i2~/2)Ro3M~(J = 1) + (i4~/2)RoSM~(J = 3) 

+ (i6,/-2)Ro7MzT1 (J  = 5) + (i8,g~)Ro9MbzTl (J = 7) + . . -  } (14.1) 
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f 
W4a = qe~(-2i)Ro3M~ 1 (J  = 1) + (3i)RoSM~ ~ (J = 3) 

+(i3-~--~-l-)Ro9Mzrl(J=7)+(i3-5)Ro9Mbr~(J=7)+...} (14.2) 

/.~/1--~\ 7 ~2 
W6a =qe (-i4r-~)RoSM~2(J=3)+~,---~)Ro Mz  ( J = 5 )  

i~/6006\R~ 9M~'~2 J 7 
/ 

+ ~ -  16 ) o z ( = )  

+(- i l5~l?)Ro9Mbr2(J=7)+""  } �9 (14.3) 

Next, we replace the explicit forms of the symmetry adapted central metal ion's 
multipoles, given in Appendix IV, and obtain the final form of the vibronic 
operators Vk~ for k = 3, 4, 6 as given below: 

1 
V3a = -~qe{4Zlo+ 8Z3o+ 12Z5o + 16Z7o+. �9 �9 } (15.1) 

Va~=lqe~-42~~176176 [ 2 3 x / ~  ,254+ 3~/2--~ , 35 ] 
4 2 7 4 + T Z 7 ~  " " / 

(15.2) 

(15.3) 
1 f - - -  , - - -  , 46006 , 15~/,~ZZ, ~ . . .  V6a=~qe~-2415Z32+4105Zsz ~ Z 7 6 -  8 72+ } 

where: 

Zt~ = Ro~t+2)x~22 ( - D  ~ + Dt_~ ) = Ro(t+2)Bl+m 

Z~,., = Ro(t+2)v~(D ~ + Dr_,.) = Ro('+2)Bt_m (16) 

210 = Ro(l+2)Dt0 = o(t+2)ol a'~0 1-"0 

where the D~  = - e / c ~  are the standard Garstang' tensor operators, and the 
tensor operators Bt+,, and Bto are defined by Eq. (16). 

To obtain the vibronic operators Vkt for k = 3, 4, 6 and t = b, c, we can either 
follow the same method as described earlier on, or perform three fold rotations 
C~(X ~ Z ~ Y ~ X) and/or  C~(X ~ Y ~ Z ~ X) on the vibronic operators V3a, 
Vaa and V6a, respectively (11). 

Having obtained these vibronic operators Vk, we can now proceed further on 
and evaluate, within the framework of the Koide and Pryce's method, all the 
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non zero reduced matrix elements, relevant to the d - d  and f - f  type of 
excitations, see Eq. (3). To do so, we need to form the irreducible tensor operators 
Or(k)  given by Eq. (5). 

Thus, by employing the V-coefficients of Griffith [21], we can easily find the 
symmetry adapted ITO given by Eq. (5). 

For example, the Z th component of the T1 irreducible representation give rises 
to three operators, each of them associated with a particular ungerade symmetry 
coordinate, of the ML6-octahedral  complex. 

Thus, we find; 

1 x oT1(3) = ----~( W3bbe -- Y3cbe Y) 
42 

1 x 
O T'(4) =--~ ( V4bbe - V4cbe Y) (17) 

-l(v6~be Y + v6bbe x) oT1(6)  = x/2 

and, in the same way, we may find the other relevant irreducible tensor operators. 

The vector components bex, be Y and bez of the electric dipole moment are chosen 
as given below (11, 27). 

x 1 1 
be =B1+1 = ~ = ( - D + I  + D l l )  

42  

_ i 1 be Y = iB11 - ~ ( D + I  + D~-I) (18) 

z be = B 1=01.  

At this stage, it is important to observe that the symmetry adapted tensor 
operators O r ( k ) ,  defined by Eq. (5) can ultimately be expressed as linear 
combinations of product operators of the form: B+mBq,t B-tuBal 1 and BoBq,t 1 for 
l =  1, 3, 5, 7 and q = 0 ,  +1. 

These product of operators can be simplified further on, and expressed as linear 
combinations of operators of the form e2rk+lck, where the Cq k have been defined 
in the text and correspond to the standard Racah's tensor operators. 

Having worked out all these products, we can construct the vibronic crystal field 
operators, defined by Eq. (5) for F = A1, A2, E, T1, T2 and k = 3, 4, 6. In the 
case of a ML6 cluster in Oh symmetry, we list the explicit form of these operators 
in Appendix V. Observe that a ligand-point charge model has been adopted 
throughout the course of this work. 

Finally, we have evaluated all those non vanishing reduced matrix elements 
relevant to the evaluation of transition dipole moments, associated with d - d  



348 R. Acevedo et al. 

and f - f  type of excitations in the case of a octahedral ML6 complex ion. We 
list them in Appendix VI. We have used real set of central metal ion's wavefunc- 
tions to evaluate these reduced matrix elements [32] and the V-coefficients 
informed by Griffith [21]. 

4. The Lieher and Ballhausen method  

This method starts from the assumption that a parity forbidden electronic transi- 
tion in a centrosymmetric complex borrows its intensity from a parity allowed 
excitation through cooperation of the odd vibrational motions of the complex 
ion [1, 5, 9, 11, 13, 14, 15]. 

In this approach, the a-vector component of the transition dipole moment 
associated with the IF171)-~ IF2y2) excitation may be written as given below 
(11, 14) 

~ ( F 1  yl -~ F272) 

= E Sk, Z {IE(Fx)- E(F~)l-X(F1711Vk,[F~7~)(FiT~I~"IF272) 
k,t FiT i 

+ lE (r2) - E (r ,)l-l(rl ~,l~~ ~ ) ( r  ~,l v~,lr2 ~2) }. (19) 

Here the Vk, are the so-called vibronic crystal field operators, as defined by Eq. 
(11) and the Ski are the ocld parity symmetry coordinates of the system. The 
intermediate electronic states [Fiyi) are supposed to have parity other than the 
terminal electronic states IFI~/1) and Ir230, respectively. 

It is customary to assume that E ( F 0 - E ( F I ) - ~  E(F2)-E(Fi ) ,  and therefore to 
replace the energy denominators in Eq. (19) by an effective energy gap, say AE 
which would correspond to the energy difference associated with the parity 
allowed excitation. 

Thus Eq. (19) becomes: 

/x" (F171 ~ F2y2) 

1 
= Y &, Z {(rlyllvk, lrm)(r,~,l~"lr2~2) 

AE k,t ri~ 

+ (r, ~11." Ir,yi)(r,v,I vk,I r2 r2)}. (20) 

Next consider a typical matrix element of Eq. (20) involving the vibronic operators 
Vkt, one of the terminal electronic states and the intermediate states ]F~y~). 

Let us, then write a general matrix elements as follows: 

(aFlYll Vk, l~'r,y,) 

=qe E (-1)r~+~Iv(F+ a F, r)ArkT(j)(arlllMr(j)ila,r, ) (21) 
r,~,j \ Y l  Yi Y 
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where Eq. (11) and the Wigner-Eckart theorem have been employed. The labels 
a and a '  denote the nature of the electrons involved in the integral to be evaluated. 

For a perfect octahedral ML6 cluster, the vibronic crystal field coefficients A~7 (j) 
are tabulated in Appendix III, the V-coefficients have been listed in Refs. [21-23], 
so that, the explicit evaluation of the integrals given by Eq. (21) may ultimately 
be reduced to the evaluation of the reduced matrix elements (aFll IMr(j)] [a'Fi). 
We have evaluated all the relevant reduced matrix elements in Appendix VII, 
involving integrals of the form: (dFIlIMr(j)IlpF2), for j = l ,  3 and 
(fFl[ [Mr(/')[ ]dF2), for/ '  = 1, 3, 5. In both cases F = T1 and T2. 

The simplest case arises, for a d - d  type of electronic transition in centrosym- 
metric environments. Here, we assume that the d - d  excitation borrows its 
intensity from a parity allowed d - p  excitation through cooperation of the odd 
parity normal coordinates of the system. Thus for this particular situation, the 
vibronic coupling matrix elements defined by means of Eq. (20) become: 

(dF17,I I Vd  IpT13,,) 

=qe~ (-1)rl+z'q-V(Iy" ~ T1 ~)ArkVt(/')(dFel[Mr(/')[lpTl ) (22) 
F, •,j ~/i 

where F1 = E, T2. 

For a 3 d - 3 d  electronic transition in a centro symmetric complex ion (Oh 
symmetry) we follow, Liehr and Ballhausen [1, 9] and truncate the above summa- 
tion, so as to include only the 4p-central metal ion's wavefunctions as the so 
called intermediate electronic states. 

For this particular case, the vibronic matrix elements defined by Eq. (22) corre- 
spond to the vibronic coupling constant of Liehr and Ballhausen [9, 11, 14]. 

To illustrate the utility of Appendices III, IV and VII, we shall evaluate in 
particular d - p  and f - d  interaction vibronic matrix elements. 

i) The vibronic matrix element (dEO] V3,~lpTlZ)-- 3'Tlz.3a.az~ 

Direct application of Eq. (22) and the appendices, mentioned above leads us to 
the identity; 

7rlz.3a qeV {(i2,/2)eo3(dEIIMTl(/' = 1)llprl) z 

+ (i4,/2)e~5(dEI IMTI(j = 3)[ Iprl) 

9.3 1 
- -~ qe [-~o+7-~5~RoJ (23) 

where: (rk)3a.4p = (R (3d)lrklR (4p)). Ro is identified with the metal-ligand bond 
distance. 

-- Tfr~ x ii) The vibronic matrix element (fTlx I V6~ldT2y) ar~y,6a" 



350 R. Acevedo et al. 

Once again, the direct application of our Appendices and Eq. (21) allows us to 
write the identity: 

d T 2 y , 6  a = qe V { ( -  i 'f-~) R oS ( fT1] IM T2( j = 3)1 [ dT2) 
x y 

/ . , / i05\  n_ 
o <fTIlIM =(j=5)IIdT >} 

x/1--~ 2f(r  3) 35 (rS)'[ 
= qe --RT+-- 42 {R0 11 ~-07J (24) 

where k <r >~ = <R I nfl [rk lR(ln + lid)), and R0 is identified with the metal- 
ligand bond distance. 

In the case of a n d  -+ nd vibronically allowed electronic transition, explicit evalu- 
ation of both the total oscillator strength and relative vibronic intensity distribu- 
tion have been carried out [1, 5, 9, 11, 14] and a fair agreement with experiment 
has been achieved. 

With regards to n f - n f  electronic transitions, several calculations can be found 
in the literature [7, 8, 12, 13, 16-19]. In all of these, the crystal component has 
been evaluated by using a closure procedure for the central metal-ion's wavefunc- 
tions. As it has been pointed out, earlier on in the text, when this approach is 
adopted the nature of the intermediate electronic states becomes totally irrelevant 
to the evaluation of the transition dipole moment, except on the choice of the 
so-called effective energy gap, AE, although, in the Faulker-Richardson model 
intensity for the lanthanide complexes, the closure procedure is employed in the 
static coupling calculations, but special attention is paid to the nature of the 
intermediate states (5d versus ng). This follows from Judd's treatment of 4 f - 4 f  
electric dipoles intensities [7, 12, 13]. On the other hand in the Liehr and 
Ballhausen's approach the intermediate electronic states IFn,/), see Eq. (20) are 
considered explicitly in the calculation of the transition dipole moment, 

In principle, the summation in Eq. (20) should be carried out over all those states 
with parity other than the terminal electronic states involved in the transition. 
In this work, we have truncated the above mentioned summation so as to include 
only (n + 1)d electronic states of the central ion. Some f - d  energy gaps have 
been measured and reported in literature [33-35]. 

Once the vibronic matrix elements, defined by Eq. (21) are known, the next step 
in the calculation is to replace the symmetry coordinates Skt by the normal 
coordinates Qkt of the molecular system, in question. This procedure has already 
been discussed in the text in connection with the Koide and Pryce's method of 
calculation. Finally, it can easily be shown that the total oscillator strength, shall 
also depend on the explicit value of the oscillator strength associated with the 
parity allowed nf-+ (n+ 1)d electronic transition [1, 5, 11, 14]. 
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5. Appendix I 

Symmetry adapted octahedral wavefunctions (J = 7) 

IA2a2) = -1~23 (176)-17- 6)) +~ (172 ) -  17- 2)) 

lEO) = ~-~ (174) -17 - 4)) 

lEe) = -]----1~29 (-176)+ 17-6))+-1~'r (172)- [7 - 2)) 

laTll) =---3" 39f--~2117- 7) +-3"f-~J--2117 - 3)--3--~---~'---23 3-171) + 32-5~ [ 75 ) 

laT10) = ~f-2 (174)+ 17-4)) 

],,Tl_l)=__3"~yl177)+__3'/~21173) 34'~7 1 +25 7 - - ~ 1 -  ) ~ 1 - 5 )  

ibT~l)__ 44-~ 7 7 34~- 7 3 5~/7 71 4231 7 ---132 - >---~-I - ) - -~-I  )--3-~-I 5) 

IbT~0) = 170) 

~/~-9 77 3~-1 7 5~/7 7 ~/231 IbT~--l) = ~ [ )---3--~- I 3)---~- --1)---~--~--17- 5) 

laT21) = 32_f_~2173 ) 3,/143 ~/429 _1)+5~/~17_5) + ~ 1 7 3 ) +  3--2-~17 32,/2 

laT20) = ~)-2~- (176) + 17- 6)) 

~/7 7 7) 3~/~-3 7 + , ~ 9  71)+5~i-3 75) 
laT2-1)=-32~/~1- -3-3-3-3-3-3-3-3-3-~ I -3) 3---~1 3-~1 

~/1--0--~ 77)+ 19 73)+15,/5 7 1)+3-2~217-5 ) IbT21) : 3--~1 3--~1 3 - - ~ 1 -  

IbZ20) = ~-2 (172) +17 -- 2)) 

32,/2 3242 3242 3242 
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6. A p p e n d i x  II 

C r y s t a l  f i e l d  g e o m e t r i c a l  f a c t o r s  ( p o i n t  c h a r g e  a p p r o x i m a t i o n )  

To ut i l ize  the  tables ,  obse rve  tha t  A kq = ( C k + C k q  ) R E  (k + x ) and  A0 k = CkoR Z (k- l ) ,  

w h e r e  the  Cq k s tands  for  the  s t anda rd  R a c a h ' s  t enso r  ope ra to r s .  

Table 1. Dipole-point charge interaction 

GrEy A l l  A~ A1_1 

T1X 

T~ Y 

T IZ  

i 
0 0 

1 
0 0 

0 - i  0 

Table 2. Electron quadrupole-point charge interaction 

GLv A22 A2+l A 2 A21 A22 

Ee 

EO 

T~X 

T2Y  

T~Z 

1 
0 0 0 0 

4~ 
0 0 - 1  0 0 

i 
0 0 0 0 

1 
0 0 0 ~ 0 

i 
0 0 0 0 --= 

42 

Table 3. Electric octapole-point charge interaction 

GFL,r A33 A3+2 A3~ 3 3 A3x A3_2 A3_3 

A2a2 

TlX 

T~Y 

T~Z 

T2X 

T~Y 

T~Z 

1 
0 0 0 0 0 +-=_ 0 

42 
i~/3 ix/5 

0 0 0 0 0 + - -  
4 4 

0 0 0 0 0 
4 4 

0 0 0 - i  0 0 0 

0 0 0 0 0 
4 4 

0 + - -  0 0 0 0 
4 4 

i 
0 0 0 0 0 0 ,/-i 
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Table 4. Electric hexadecapole-point charge interaction 

353 

oL 

A l a l  

EO 

Ee 

T1X 

T I Y  

T1Z 

T2X 

T2Y  

T2Z 

A44 A43 A42 AI~ A n A4-1 A4-2 A43 A44 

0 0 0 0 0 0 0 
2,,/-6 24c3 

0 0 0 -+ 0 0 0 0 
2,f6 2x/3 

1 
0 0 0 0 0 0 0 0 

i i , /7  
0 + -  0 + - -  0 0 0 0 0 

4 4 

,/~ 1 
o o o 0 0 + - -  0 - -  0 

4 4 
i 

0 0 0 0 0 0 0 0 + - -  

i47 i 
0 0 + -  0 0 0 0 0 

4 4 
1 

0 0 0 0 0 - -  0 0 
4 4 

i 
0 0 0 0 0 0 + - -  0 0 

4~ 

Table  5. 2 5 multipole--point charge interaction 

oLv As+s As+4 As+3 A~+2 As+I A~ As_I As_2 A 5 A s A 5 -3 -4 -5 

EO 

Ee 

aT1X 

aT1y 

~T~Z 

bT1X 

bT1Y 

bT1Z 

r~x 

T~Y 

r~z 

0 0 0 0 0 0 0 0 0 
1 

+ - -  0 

1 
0 0 0 0 0 0 - - -  0 0 0 

i , / ~  i x / ~  i3x/7 
o o o o o o + - -  o o + - -  

16 16 16 

+ - -  0 + - -  0 + - -  0 0 0 0 0 0 
16 16 16 

0 0 0 0 0 - i  0 0 0 0 0 

i - f ~  9i  i-f5 
0 0 0 0 0 + - -  0 + - -  0 + - -  

16 16 16 

9 , ~  
+ - -  0 0 + - -  0 0 0 0 0 0 

16 - i 6  16 

i 
0 - - -  0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 + - -  0 0 
8 8 8 

,/5 , /~  
+ - -  0 - - -  0 0 0 0 0 0 0 

8 8 8 

i 
0 0 - - -  0 0 0 0 0 0 0 
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7.  A p p e n d i x  H I  

V i b r o n i c  c rys ta l  f ie ld  coe f f i c i en t s  fo r  F = T l u  , T2u a n d  J = 1, 3, 5, 7, in uni t s  of  

R o  (J+2). H e r e ,  Ro  is i den t i f i ed  wi th  t h e  m e t a l - l i g a n d ,  b o n d  d i s tance .  

J "Flu (/23) T1 u ( / ]4)  "/-2 u (/ , '6) 

T1, X T 1, X 
A3c = i2x/-2 A4c = - i 2  0 

T . Y  T1, Y 
A3b = i2x/-2 A4b = - i 2  0 

T1, Z TI ,  Z 

A3a = i2x/-2 A4, ~ = - i 2  0 

TI, X T 1 , X T 2, X 
A3~ = i4x/2 A g c =  i3 A6c = - i ~ / l ~  

T~, Y TI, Y T2, Y 
A3b = i4~/'2 Aab = i3 A6b  = - i x / ~  

T1, Z T1, Z T2 ,  Z 
A3~ = i4x/2 A4~ = i3 A6~ = -ix/T5 

a T ~ , X  

A3c  = i6x/2 

aT1, Y 

A3b = i6x/-2 

a T 1 , Z  

A3a  = i6x/-2 

aT~,X 
15 

A4c = - i - -  
4 

aT1, Y 
15 

A4b = - i - -  
4 

~T~,Z  
15 

A4o = - i - -  
4 

bT1, X 
3,/gg 

A4c  = - i - -  
4 

bT~, Y 
3 4 ~  

A4b = - i - -  
4 

br~, z 
3 ~ / ~  

A 4 .  = - i  
4 

T2, X 

A6c  = i - -  
2 

T2, Y 

A6b  = i - -  
2 

TE, Z 

A6a = i - -  
2 

bT1, X 

Aac = i8x/2 

bT1, Y 

A3b = i8x/2 

bT~, Z 

A3a = i8x/2 

~TI,X 

A 4 ~  = i - -  
8 

~T1, Y 
3 x / ~  

A4b = i- 
8 

" T ~ , Z  
3x/231 

A4a = 1 " - -  
8 

"T2, X 

46~6~ 
A6c = - i - -  

16 
aT2, Y 

,/6--~ 
A6b = --i 

16 

~T2, Z 
6,/g6~ 

A6a = --i" 
16 
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bT~,X bT2, X 
.35 15,f~ 

A4c = l - -  A6c = -i- 
8 16 

bT1, Y bT2, Y 
35 154'~ 

A4b = i - -  A6b  = -i" 
8 16 

bTl ,Z  bT2, Z 
35 15,f~ 

Aaa = i - -  A6a = -i" 
8 16 

8. Appendix IV 

S y m m e t r y  a d a p t e d  complex  c o m p o n e n t s  of the  cen t ra l  m e t a l - i o n ,  e lec t r ic  mul t i -  

poles ,  for  J = 1, 3, 5, 7 and  F = T1, T2. 

1 k 
B~q  = - - ~ ( ~ D q  + Dk_q) 

Bo k = D o  k 

J Central metal-ion, multipoles complex components 

1 M T1 = -iBl+l 

M~: = + . ~ _ ,  

M~' = -iB~ 

3 M x = - i  4 B+3+i~  -B+I 

3 
MT~ = -  4 B - 3  4 -1 

M~' = - i B  3 

My? = + i ~  B33 + i ~ B  3 

M ~ _  ~ 3 " / ~  ~ - - - J _  ~ +--g- S_ ~ 

M )  = -iB3_2 

5 M ~ I = _ i 3 ~ / - ~ B  s ~/'7-0 5 2~f~ 5 
16 +5 +i-- i - f f -B+3-i~6-B+l  

3 , f~  5 4 ~  5 + 2 ~ B 5  
M~'rl =+ 16 B - 5 + ~  -B-3 16 -1 

M~z rl = - iBg 

br ~ /~  5 _ i 9"f~B 5 _ i 2 ~ / ~ . 5  
M x l  = - i ~ - B + s  16 +3 16 +1 
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J Central  metal- ion,  multipoles complex components  

bT ,ff6B5 9,/5 5 +2 , /~B5 
MY1 = +  16 - 5 - - ~  B-3 16 - i  

b T M z  ~ = -iB5-4 

5 ~ 5 i25-7BS 
M ~ = + i  8 B + 5 + i ~  B+3-  ~ -  +1 

M ~ = +  8 B - 5 - - 8  B - 3 -  B5-1 

T 2 __ ' 5 M z  - - tB-2  

M ~  = - i X / ~ B  7 25 7 " / H  7 i3x/ '~B 7 
32 +7- i3 -~B+5  +i 3--~-B+3 + 32 +1 

4 ~  7 25 7 4 ~  ~ 3 4 ~  
MyT~ =-- ~ B-7+-~2B-5+--2-2-~ B-3--'2-2-~ B-1 

3Z JZ .SZ 3Z 

M zT~ = -- iB7_4 

~. . 4 - ~  ~ 4 ~  ~ 3 , /~  ~ 547 
M x ~ = - I  32 B + 7 + i  3 - ~ - B + 5 - i - - ~ B + 3 + i " ~  -B+I 

b T % / ~  % / 2 ~  7 3 x / ~  7 _ 5X/7B7 
My1 = -  3-~--B7_7 - 32 B - 5 - ~  -B-3  32 -1 

b T M z ~ = - i B  7 

T2 " / ~  7 5 ~ / ~  7 3 - , /2~  7 + l X / ~ B  7 
M ~  = + i  64 B+7+i6--4--B+5+i 64 B+3 ' - - 6 4  +1 

M~2=_x/-~BT_v+Sx/2-6B75 3 x / ~  7 8 x / ~  7 
64 64 ~ B-3  + - - ~ B - 1  

MzT2 = -iB7_6 

~T , /2002 7 x / ~  7 _ i 1 9 5 2 B  7 + i15~ /6B7  
M x  2 = +i 64 8+7 + i"-~ -B+5 64 +3 64 +1 

~T 42----0-02 7 x / ~  7 19x/2 7 15x/6 7 
M y 2 =  64 B - 7 + - ~ B - s + - ~ B - 3 + ~  -B-1  

b T M z  2 = -iB7_2 

9. Appendix V 

Symmetry adapted vibronic operators 1 
The Koide and Pryce Method. A point charge approximation. A ML6 octahedral 
cluster (In units of e) 

qe2r k 

Yk - R0k+l 

1 The Kets 1F7)./=2,4, 6 are given by Gritiith [20], in Table A-19,  as linear combinations of the kets 
[JM). To utilize, Appendix V, we write the identity: IJM)= C~ ,  where the C ~  are the standard 
Racah 's  tensor  operators 
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i) Al-symmetry 

O~a((3) = T ' y 2 + T ' y  4 Alal)J=4+l---~lAlal)j= 4 

18~/3 "1 28-,/3 
+ 11 Ialal)j=6~y6+-~ yslalal)J=6+''" 

oA1,(4 ) 2",/3 6~/7 f 15~/7 =- 3 72 +Tyaa la l ) J=4+l - - -~ la la l ) j=4  

15~/g ) 144g 
+ 22 [nlal)J=6~'Y6--~ T8[nlal)J=6-1-''" 

A t Oal (6) = 0. 

ii) A2-symmetry 

Oa  (3) =0 
AA~ (4)=0 

3V7--~ A m 2 _ _ _ _ ,  Oa2(6)= 22 3'61 2a2)J=6 
4770 

10 yslA2a2)1=6+.... 

iii) E-symmetry: 

O ~ ( 3 ) = - - - ~ - ' y z l E e ) j = 2 +  - [Eeb=2+ lEe)j=4 74 

f1545 9442 Ee ) 14,,/-~ i-/I >J=6j+v6 
24g 94g 3 4 ~  of ( e) =--~-~/2lEe)j=+z{----~lEe)j=2 +~lEe)1=4} ~'4 

f 3x/]-6 154~- ) 43x/~ 

f 15~f2 3 4 5  ) - -  
O~ (6)=~--~lEe) j=2+-- -~lEe) j=4J  y4-- { ~ l E e ) , = 4  

15~/7 ) 2347 
+ 22 IEe)j=6Jy6+~ --yslEe)J=6+'''" 

iv) T1 -symmetry: 

4 4 ~  f 643-5 - 
05 (3 )  ff "y4lZlZ)j=4W~"'~[ZlZ).l-4W9x/7lZlZ)J-6~Y6 

- 1 1  - j  

4-~57 rsl r ~ z b = 6  + " " 
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3 . f ~  { - - - i -~  l T1Z ) J = 4 -t- " - -~--  I Z l Z ) J = 6 } ~/ 6 Oz~(4)=-  14 T4IT1Z)y=4-k 3.f7--0 15~/]--4 

r 2 , / ~  
-b [ - - -~  ys[T1Z)J=6 +" " " 

O~ (6) = O~ (4). 

v) T2-symmetry: 

O~(3) 4~/-3yzlTzZ)1=z+[843 4~/5 T. Z / 
. . . .  3 t 7  T~Z)j=2--[-TI 2 )J=4~ ~/4 

f6~/5 3~/210, 944-62 b "1 
- ~ - ~ ] Z 2 Z ) J = 4 t - ~ l  T2Z)J=6-[-~I  Z2Z)J=6~/6 

f 2,,/2,,/~ ,~ 44-62 b "1 
+ --iTI 
2v/-6 f3~/g 3~/]--d 1 

o )  (4) = ~ r~l T~Z).,=2 + [---f-IT2Z)~,=~ + ~ T2Z).,=4~ "Y 4 

/ ~ / l f  6~/i-0 15~/231 / "l-[--'-i-i'--IZ2Z)J=4"l-21880-"'Slaz2z)y=6"t'- 88 'bz2z)J=6j "Y6 

/ ~/1-~ a ~/231 b ) 

{ ~  %/]--0 T ] 0 ~ 2 ( 6 )  = 5--~61T2Z)J=2 ~ I 2Z)y=4j  ~ ~4 

+f__~/lO5laT2Z)J_6_ t ~ - . - - - ~  15x/~'l b7 ~ ] 
- ~-8 ] zZ)1=6jty6 

f,/~-05 o , / 2 -~  ~ / 

10. Appendix VI 

Non-zero vibronic crystal field, reduced matrix elements. Closure procedure. 
Point charge model. A ML6 octahedral cluster. 

qe2(r k) 
(Yk) = Rok+l (In units of e). 

10.1 d - d  Excitations 

i) A~-symmetry 

= ~/3 (~(~2) "['- ~-(]/4) -[- ~-("~6)) (dEilO~l(3)lldE) - 4 1 6  1 0  
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( dEll oA1 (4) 11 dE) = ~ /6 ( -  2(3'2) + 2(3'4) --  ~1(3'6)) 

= ~/2 (2(3'2) -- ~X(3'4) - -  1]-(3'6)) (dTeIIOA,(3)IIdT2) - 16 10 

(dZ21lO a~ (4) I [dZ2) 4 10 = ( -  2(3'2) - -  7(3'4) -[- ]1( 3'6))- 

ii) A 2 - s y m m e t r y :  T h e y  all vanish. 

363 

iii) E - s y m m e t r y :  

(dEllO~(3)lldE)=,]~(~(3"2) + ~(32 3'4) -[- ffff(50 3'6)) 

%/6 8 _t_4 5 (dEllOE(4)lldE) = (-~(3'2) v(3'4) - ~(3 '6))  

15,/~ 
(dEllOl~(6)lldE> ~ (3'6) 

<aT2110 ~ (3)11dZ2> = (-~<3'~>-8(74) + 17~7~ 

(dT2llO ~ (4)11 dT2) = x/2(4(3'2) - 1(3'4) --  @7(3'6)) 

/5,/~ 5,/g \ 
(drill 0 "  (6)11dT2) = ~ - 7 - ( 3 ' 4 ) - - i ~ - (  3 '6) )"  

iv) T1 - s y m m e t r y :  

(dEll 0r1(3)[ IdTe) = ,/3(2~ --  1~(3'6)) 

<dEllO ~1 (4)11dT2> = ,/6(~4(3'4) + ~1(76)) 

( dEI l O ~l( 6)l IdT2) = ( dEI l O Tl( 4 )l [dT2) 

<aT2110 ~~ (3)11dE) -- - ( dEI  I O'~ (3)11dZ2) 

( dZ2l lOT~( 4)l ldE) = - (  dEI l OT~( a)l ldZ=) 

( dZ2l l Or~( 6)l I dE ) = - (  dEI l O ~ (6)1 [ dZ2) 

v) T z - s y m m e t r y :  

<dEI IOr=(3)l Idr~>= 8 4 30 (--if(3'2) "t- if(3'4) + 77(3'6)) 

(dE[ 

(dE[ 

(aT21 

( dT2I 

(aT21 

(aT21 

(dT:I 

I0  T2(4)11dT2) ~ ~/2(~(3'2) + ~4(3'4) -t- ~77(3'6)) 

15"/~ 
IOr2(6)lldZ2)=+ 14 (3'4) 

I O T2(3)11dE> = (dEIIOT~(3)I IdT2> 
I 0~2(4)11dE) = (dEllO r~ (4)11dZ2) 

I O~(6)11dE) = (dEIlOr2(6)l IdT2) 

I O T~ (3)11dZ2) = ,/6(4(3'2) -~(3 '4)  "[- ~7070(3'6)) 

I0  T~(4) I I dZ2> = , /5(-~(  3"2> - ~(3'4) + ~(3'6)) 
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10.2. f - f  excitations 

i) Al-symmet ry  

~/6G(,.'}/2) - -  ~(,. '}/4) - -  ~ ( , . ' } / 6 )  q- ~ ( , . ' } / 8 ) )  (fA2IIOAI(3)[IfA2)= - 2 16 50 112 

[fA2) = ~/3 (-~(y2) - rr(,.,}/4) -['- ]3(,.,}/6) - -  429(,.'}/8)) (fA2[[oA~(4)[ - 2 4 10 112 

( f r l [ [  O A l ( 3 ) [  [ f r l )  = x / 2 ( 2 ( ] / 2 )  _[_ ~ 1 ( ] / 4 )  q.. ~(15 ,.'}/6) q- ~(14~ ,.'}/8)) 

(frl[[OAl(4)[[frl)=(_2(]/2) 6 90 140 "[- H(,.'}/4) - -  ~ ( , . ' } / 6 )  - -  ~ ( , . ' } / 8 ) )  

8 115 84 (fTzl [ oA~(3)[ [fT2)---: ~f2(2( ] /2 )  --  ~ ( ] / 4 )  --  1 ~ ( ] / 6 )  --  1 ~ ( ] / 8 )  ) 

( f T e I I o A ' ( 4 ) I  l i f2)= (--2(,.'}/2)- ?-11(]/4) -- 1~24Q-3(]/6) -'l- 1-8433(]/8)). 

ii) Az-symmetry  

(fTl[ [ oA2(6)1 [fT2) = ~/'1"5(1~-3(]/6)- ~-9(]/8)) 

(fT2l l oA~( 6)l l i l )  = ( fTd l Oa~( 6)l I fT2) 

iii) E-symmetry  

( i~ l  l O~ ( 3 )l l i O  

( i l l  l O~ ( 4 )l l fTx) 

( i , [  l O~ ( 6)l l fZO 

(i1110~(3)1 l i 9  

( i1110 ~ (4)1 l i 2 )  

(fZ~[ [ O ~ (6)1 [fT2) 

(i=llO~(3)llfTO 

( 11 6.(]/2) + ~Q_54 ( ,)/4 ) 375 980 = + ~ ( " / 6 )  + ~ ( ] / s ) )  
__ - -  8 39 45 1505 
- ~/2(-~(,.'}/2) "l- 55(,.'}/4) - -  ~ ( , . ' } /6 )  "j- 17T6(, . '} /8))  

= -,/6(- ~(,.'}/4) "[- 5~2(,.'}/6) - -  1~156 (,.'}/8)) 

_ 8 22 75 - -  ~ / -5( ]5( , . ' } /2)  -I- ~ ( , . ' } /4 )  - -  ~ ( , . ' } / 6 )  - -  ~ k  ]/8~)196/xx 

-~" %/ -~( - -~5( , . ' } /2 )  + 5~(,.'}/4) "1- ~(,. '}/6) - -  1~116 (,.'}/8)) 

= ~ /3 -6 (__  21(]/4) 7 161 - -  5f f2(] /6)  -[- 171~ ( ] / 8 )  ) 

= - ( f r d l O  ~ (3)1 If T9 

(fTa[ 

(fT21 
( i 2 1  

(.fT21 

<!21 

10 6 (4)1 l i l )  = - ( f T l l l O  ~ (4)11 i 9  

IO 6 (6) 11 i l )  = - ( i 1 1 1  0 6 ( 6)11fT9 

l o z ( 3 ) l l f T z ) =  40 35 196 (--~(]/4) -- ~ ( ] / 6 )  "1- ~ ( ] / 8 ) )  

I o  E (4)11 fT2) = ~ ( -  1~(,.'}/4) -- 5~2(,.'}//6) "[- 53~21 (,.'}/8) 

", /6( -  H i  ,.'}/4) + ~(,.'}/6) - -  572(,.'}/8)" [OE(6)[[fT2)= - 5 35 161 

iv) T1 -symmetry 

J f T 2 )  - N / 3 ( -  ~ 3 ( ] / 4 )  "-[- ~ ( ] / 6 )  - 1 ~ 3 ( ] / 8 ) )  (fA2IIOTI(3)[ _ -  20 140 

( fA2[lO T1 (4)11 i a )  = , /6(-~(] /4)  - -  23~6(Y6) -~ 1 ~ 3 ( Y 8 ) )  

(fA2llOTl(6)llfTz) = (fAal[Orl(4)llfTa) 
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(ITll I O ~ (3)1 ]fT2) = ~ ( - - ~ ( " ~ 4 )  "1- 1~3('~6) "J- 1~3("~8)) 

[ f"/-'2) ~-~ 4 5  (--TT(~4) -- ~ ( ~ / 6 )  - - ~ ( ~ 8 ) )  (]Tlli oT~(4)I - 3 147 28 

( f i l l  I 0 ~' (6)1 l IT9 = (fVdlO~(4)llfT~) 

(fT2I I oTI( 3)[ IRA2) = (fA2I IoT~( 3 )I [fT2) 

(fT211oTI(4)I'I fA9  = <f&llOTl(4)llff 2> 

<fTd l OT~( 6)l irA9 = (fAd lOT~(6)l IfT9 

<fTd lOT~( 3 )l lYTI> = (fTd lOT~( 3 )l I/T9 

<fT=l I oT~(4)I IfTl> = (YTll I oT~(4)I IfT~> 

(fTd lOT'( 6)l IfT0 = <fT, l I oT~(6)I IfTg. 

v )  

(frll 

( f i l l  

(fVll 

(fV, I 

(fTll 

( fV21  

(fTd 

(fr21 

(fTd 

(fTd 

(fT21 

T2-symmetry 

(fAd lOT~(3)llfT1) = ~/5(~(3'2) - 5~('Y4) --  1~3(~/6) "[- ~9 ( '~8 ) )  

(fA2[IoT2(4)[ Jfrx) = ~ f ~ ( - - ~ 5  (~ /2 ) -  l~0('Y4) + &(T6)  -- 4-~9(T8)) 

(fm2lloT~(6)llfZ,) = "v/'~(-2-~(T4)- ~ (Y6)  + 283(T8)) 

(fT, J[O T= (3)1 [ f a2)  -- (fA21JO T= (3)11 fT1) 

<fTdlOT=(4)l IRA2> = <fAd IoT2(4)[ IfTO 

(fT, I I oV=(6)l IrA9 = (fAd I O v~(6)l I fT1) 

= 2 , / 6 ( -  i s  (Y2) - ~5 (Y4) - ~ (Y6) + 4 ~ ( Y 8 ) )  <fTallO~z(3)llfr,> - 1 4 3o ,4o 

i O T~(4)I i fT1) __ ~ ( 2 ( . / 2 ) _  6(3,4) ..1_ ~ (  ~/6)285 "~ 858('~8) ) 5 9 5  

I oT2(6)11fT1) = " ~  (8( '~4) "~- ~ - ( ' ~6 )  "J- ~ - ( r 8 ) )  

IOT=(3)llfT2)=4r~(_~(3,2) 12 579 196 "4- ~ ( ] /4 )  "[- ~ ( ' Y 6 )  "{- ~ ( ~ 8 ) )  

I O T~ (4) 11 fT2) = ~/5 (~(Y2) + 9("~4) "31- 155~3 ("~6) "~ 4-~9(")/8)) 

35 42 I O T~ (6) 11 fT9 -- ~ -  (-(")/4) "[- 208(')/6) "j- ]3(")/8)) 

I O~(3)11fT1) = -(fZdlO~=(3)l [fT2) 

I Or~(4)llfT1) = -(fTlllO~=(4)llfT2) 

IOr=(6)l I fT0 

IO T2(3)11 fT2) 

IoT2(4)11fT9 

I O V=( 6)l l fT2) 

= - ( f T ,  I I 0 r=(6)[ IfT2) 

= 2 4 6 ( - -  �89 -1- if3("~/4) -1- 115@3(')/6) -- 4@9(")/8)) 

= 45(2(*Y2) 23 95 469 -{- ffff(')/4) "1- 286(r6) -- ~ ( " ) t8 ) )  

, /3 175 7 

365 
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11. Appendix VII 

Non zero reduced matrix elements (A Point charge model). 
The Liehr and Ballhausen's Method. 
( d - p  and f - d ,  interaction matrix elements) In units of -e(r J) 

11.1. d -  p interactions 

J = l  

2,/g 
(dEI IMT'IIpT1) = +i 

5 

<dZ2l IMr l l  IpZl) = +i 
5 

J = 3  
9,/5 

(dE I ]Mr'llpT1) = + i - -  
35 

(dE I IMT~ I I pT~) = - i  7 

(dTz] [Mr~llpT1) = - i  3~/30' 
35 

3,/~ 
(dT2] IMr2l tprl) = - i  

7 

Note: The CS(3m/2m ') coefficients, tabulated by Tanabe, Sugano and Kamimura 
[30] are in error. 
We have employed the CS(3m/2m ') coefficients tabulated by Condon and 
Shortley [36]. 

11.2. f -  d interactions 

J = l  

4 ~  
(fA2[ IM T111dT2> = - i  14 .... 

3,/5 
<fT111M~'I IdE> = +i 4 ~  

.342 
( f r l [  [M T~ [ [dT2) = + t ~  

(fT2[ IMTq IdE) = -i--q-- 
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(fT2l IM Tq IdZ2) = -i----~- 

J = 3  

(fA21 [MTq IdT2) = +i 2-~ 

445 
(fTll [M r~ [[dE) = + i3x/~ 

(fTxl [MT2[ IdE) = - i  
21 

(fZlllMT'[ldTz)= + i  
70 

(fr~l IMPel laT:> = +i 
42 

(fT2[[MTII[dE)= +i 
21 

(fT2[ IMr~l [aT2) = - i  
42 

(YF211Mr~l IdZ2> -- - i  
14 

J = 5  

(fA2[ [ M~T1 I ldZ2) = - i  23----~ 

(fA~I I M ~  [[clT~) = + i -  l l  
lO,/1-~ 

(fTl[ [M aT' [[dE) = +i 23---~ 

543 
( f z d  IMT211dE) = +i  

33 

<fT~l IM~ I IdT2) = -i-  
154 

5~/g <Yrll IMbT~ lldZ2> = + i - -  
22 

(fTll IM~2I IdZ2) = - i 53~6 
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(fT2[ IM"r~ [ [dE) = - i  
231 

(fT2[ ]M~r~ l]dE) = - i - -  
11 

(fT l IM ' lldE) = + i - -  
11 

25,f  
ffr l FM~ t Idr > = +i- 

462 

(fT l I = - i - -  
22 

(fT211M r~l IdT2) = - i - -  
11 
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